
Interdependence of behavioural variability and response to
small stimuli in bacteria

Heungwon Park1, William Pontius2, Calin C. Guet3, John F. Marko4, Thierry Emonet2, and
Philippe Cluzel3
1The James Franck Institute, The Institute for Biophysical Dynamics, and The Department of
Physics, University of Chicago, Chicago, IL 60637, USA.
2Departments of Molecular, Cellular, and Developmental Biology & Physics, Yale University, New
Haven, CT 06520, USA.
3FAS Center for Systems Biology and Department of Molecular and Cellular Biology, Harvard
University, 52 Oxford St, Cambridge, MA 02138, USA.
4Department of Biochemistry, Molecular Biology, and Cell Biology and Department of Physics and
Astronomy, Northwestern University, Evanston, IL 60208, USA.

Abstract
The chemotaxis signalling network in E. coli that controls the locomotion of bacteria is a classic
model system for signal transduction1–2. This pathway modulates the behaviour of flagellar
motors to propel bacteria towards sources of chemical attractants. Although this system relaxes to
a steady-state in response to environmental changes, the signalling events within the chemotaxis
network are noisy and cause large temporal variations of the motor behaviour even in the absence
of stimulus3. The fact that the same signalling network governs both behavioural variability and
cellular response raises the question of whether these two traits are independent. Here, we
experimentally establish a fluctuation-response relationship in the chemotaxis system of living
bacteria. Using this relationship, we demonstrate the possibility of inferring the cellular response
from the behavioural variability measured before stimulus. In monitoring pre- and post-stimulus
switching behaviour of individual bacterial motors, we found that variability scales linearly with
the response time for different functioning states of the cell. This study highlights that the
fundamental fluctuation-response relationship is not constrained to physical systems at
thermodynamic equilibrium4 but is extensible to living cells5. Such a relationship not only implies
that behavioural variability and cellular response are coupled traits, but also provides a general
framework to examine how the selection of a network design shapes this interdependence.

It is standard to characterize the stochastic dynamics of physical systems in thermodynamic
equilibrium by measuring spontaneous fluctuations and responses to small external
perturbations. Because these two distinct measurements contain the same information, they
are related by the fluctuation-dissipation theorem (FDT)4. Although the FDT has practical
applications to evaluate force-extension sensors for single bio-molecules6–7 and to predict
static cell-to-cell variability of gene expression8–9, it has not been possible to apply it
directly to study the dynamical behaviour of living cells because these cells are open
systems with significant non-thermal dynamics. However, this theorem has recently been
extended to a fluctuation-response theorem (FRT) for systems that are out of
thermodynamic equilibrium, when the systems have a well-defined steady state and
Markovian dynamics5,10–12. For application to living cells this condition amounts to
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studying dynamic processes with sufficiently short “memory” that they can relax to a well-
defined steady state. We wish to employ the FRT as an operational framework to establish
the interdependence of distinct cellular traits without relying on the biochemical details of a
specific signalling pathway. A fundamental open question is whether fluctuations and
responses of living cells are ever related by the FRT.

To tackle this question experimentally, we used the well-characterized chemotaxis system in
E. coli, which governs bacterial locomotion13. This bacterial system displays both strong
fluctuations and adaptive responses to external stimuli. Additionally, it exhibits reproducible
relaxation to steady states on timescales much shorter than the cell’s lifetime. In this system,
noise amplitude and adaptive response are both governed by the same signalling pathway.
Therefore, it is plausible that they are dynamically coupled in the manner specified by the
FRT. Cell dynamics sensitive to intracellular noise are likely to be similarly sensitive to
small extra-cellular perturbations, such as sudden changes in the environment.

The chemotaxis network is a phosphoryl cascade that controls the concentration of the
phosphorylated form of the signalling protein CheY1–2. Its active form, CheY-P, binds to the
sensory basal part of the flagella rotary motor and induces clockwise (CW) rotation, causing
tumbling that randomizes the bacterial swimming direction. In response to a sudden step of
attractant concentration, the CW bias (the probability for the motor to rotate clockwise)
decreases with [CheY-P], and bacteria tumble less frequently. Therefore, in swimming
bacteria, chemotaxis is achieved by changing the length of the runs between tumbles in
response to the environment. One of the hallmarks of bacterial chemotaxis is adaptation.
Following a stepwise stimulus, the CW bias decreases abruptly, before slowly adapting back
to its pre-stimulus level. Even when bacteria are adapted to their environment, the CW bias
of individual cells fluctuates around the mean. These temporal fluctuations in CW bias
reflect slow fluctuations in signalling events throughout the transduction network14. To
verify that the bacterial chemotaxis system satisfies the FRT, we monitored both the
temporal fluctuations of the CW bias before stimulus and the cellular response to a small
stimulus at the single-cell level. Both quantities were obtained from the time series of CW
and CCW intervals of individual motors from bacteria immobilized onto a glass coverslip15

and submerged in a motility medium that does not support growth. Single-cell experiments
are complicated by inherent cell-to-cell differences in relative chemotaxis protein
concentration, leading to differences in switching dynamics (Fig. 1a). To compare cells with
similar behaviour, we sorted wild-type cells according to their steady-state CW bias
(Methods). These CW bias bins define different classes of cells, which, despite being
genetically identical, have different dynamics and must be analyzed separately3.

First, we quantified the response in single cells by measuring the length of successive CCW
intervals immediately following the stimulus. The small stimulus (10 nM of aspartate) used
in this study is close to the limit of sensitivity of the bacterial chemotaxis system16. We
found that the length of the CCW intervals after stimulus was only slightly longer than that
in pre-stimulus cells (Fig. 1b). Therefore, we expected the response of the system to be
within the linear regime, which was necessary to apply the FRT. We also tested the response
of the chemotaxis system for a stimulus 100 times larger (1 µM aspartate). At the single-cell
level, the length of first CCW interval following the small stimulus (Supplementary Fig. 1a)
was distributed around the mean CCW interval length before stimulus (Supplementary Fig.
1b). Given that CCW interval length is a stochastic variable, we averaged the CCW interval
lengths after stimulus between cells and found that the length of first CCW interval was
slightly longer than the pre-stimulus length (Fig. 1b). Surprisingly, the second CCW interval
following the stimulus returned to near pre-stimulus lengths for both large and small
attractant concentrations (Fig. 1c and Supplementary Fig. 1c for individual cells). Although
the cellular response to stimulus spreads in some cases beyond the second interval
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(Supplementary Fig. 1d–e), these results qualitatively indicate that the first interval contains
most of the chemotactic response to both small and large stimuli.

To characterize the system quantitatively, we defined the response time as the cumulative
length of post-stimulus CCW intervals that are strictly longer than the mean CCW interval
length before stimulus (Fig. 1b–c and Supplementary Fig. 1e). This procedure is not exact
but it yields a realistic estimate of the response time under the condition of small stimulus
(Supplementary Fig. 2). We found that the response time decreased with CW bias for both
small (Fig. 2a) and large stimuli (Fig. 2a, inset). Because all cells returned to their pre-
stimulus behaviour (Supplementary Fig. 1), the system exhibited near-precise adaptation at
the single-cell level, regardless of CW bias (Supplementary Fig. 3 for each CW bias bin and
for individual cells). This result is concordant with that obtained from population
measurements17–18 and shows that the dynamics have sufficiently short “memory” that they
can relax to a well-defined steady-state.

A direct consequence of the linear approximation is that the response time of the system to a
small external stimulus should be proportional to the correlation time of the spontaneous
fluctuations before stimulus. Using serial correlation analysis19–20, we evaluated the
correlation time in non-stimulated cells (Supplementary Fig. 4). In agreement with our
assumption of linear dynamics21 and the general prediction of the FRT, we found that the
correlation time scales linearly with the response only to small stimulus (R2=0.75; Fig. 2b)
whereas to large stimulus it scales poorly with regression coefficient R2=0.07 (Fig. 2b,
inset). This result has an important practical implication: The response time that governs the
cellular response in chemotaxis can be experimentally inferred by measuring the temporal
correlations in behavioural fluctuations from cells before stimulus.

Cellular behavioural variability can also be defined by the amplitude of the noise rather than
its temporal correlations. To characterize the amplitude of the output noise of the
chemotaxis network, we computed the power spectral density of the switching binary time
series measured from individual motors before stimulus (Fig. 3a, inset for CW bias bin
0.15–0.20. See Supplementary Fig. 5 for all CW bias). We evaluated the low frequency
noise by integrating the power spectrum between f = 1/1500 s−1 and f = 1/10 s−1. In this
frequency range, the temporal fluctuations are putatively caused by the slow methylation-
demethylation of the receptor-kinase complexes that are also controlling the adaptive
process14. Two elements contribute to the observed output noise: i) the spontaneous noise
associated with the signalling events of the chemotaxis network and ii) the stochastic
switching behaviour of the bacterial motor (Fig. 3a). The binary nature of the switching
behaviour of the motor dominates the variance of the noise and masks the signalling noise
within the chemotaxis network. Therefore, using a procedure developed by Shibata et al.22,
we decoupled the signalling noise, σ2

CheYp, from that of the motor. We then found that the
signalling noise decreased with the CW bias (Fig. 3b).

Operationally, we used a simplified expression of the FRT, where the response function of
the chemotaxis system μ(t) and the autocorrelation function C(t) of the spontaneous

fluctuations of the cellular behaviour should be related by . Here, the
fluctuation-response coupling parameter K is a constant that may depend on the genetic
background, growth conditions, and functional state of the cell. We plotted the Fourier

transform of the coefficient  as a function of CW bias. We found that
the coupling K was indeed constant for CW bias ranging from ~0.05 to 0.5 (~0.1 to 0.3 for a
large stimulus, albeit at a different value) and for frequencies ranging from 1 s to 5 min (10 s
to 5 min for a large stimulus) (Fig. 4a, Supplementary Fig. 6 for |μ̃(ω)|, and Supplementary
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Fig. 7 for the inverse of |K̃(ω)|CW bias). The finding that |K̃(ω)|CW bias is constant for small
stimulus indicates that the FRT is applicable to the chemotaxis system over a wide range of
intracellular parameters. In the most general non-equilibrium case, the coupling K may
change when the genetic background or the growth conditions are modified. On the other
hand, we found that the value of |K̃(ω)|CW bias was similar across a wide range of CW biases,
reflecting that the coupling constant is independent from the functioning states of the cell
and levels of expression of the chemotaxis proteins. This result is remarkable since most of
the chemotaxis network has highly non-linear signal processing, such as the cooperative
behaviour between receptors that governs the input-output relationship of the receptor-
kinase complex and the signalling cascade that involves phosphorylation/dephosphorylation
cycles in series23–24.

The standard assumption is to consider that noise is a limiting factor in intracellular
signalling and that evolution selects network designs against it25. Using the framework of
the FRT, we asked whether the temporal fluctuations in the switching rate of the motor and
cellular response are ever dynamically coupled. In such a situation, it would not be possible
to reduce the noise in the network output without affecting the cellular response itself.
Remarkably, we found that the response time to a small external stimulus scaled linearly
with the signalling noise from the chemotaxis network in cells before stimulus (R2=0.8; Fig.
4b), which was consequently linearly related to the correlation time (R2=0.9; Fig. 4c).
Furthermore, we found that the response time to a large stimulus scaled poorly (R2=0.4)
with the signalling noise, reflecting that for large stimulus, the system operates outside the
regime of linear approximation (Fig. 4b, inset).

We interpret this observation in simple mathematical terms, where the fluctuations in the
network output, δCheYp, about its average have linearized kinetics of the form of a

Langevin equation 21,26, where  is an input random
function that has the characteristics of white noise and an amplitude D, and τ is the measured
correlation time in the output of the signalling system. In this coarse-grained picture, there

should exist a strict relationship between the output noise amplitude, , and the

correlation time of the system, τ, where . Although the coefficient D can depend
on intracellular parameters in a complex way, our experiments surprisingly showed that two

cellular traits, the amplitude of the output noise  and the cellular response time are
linearly coupled. This observation implies that the coefficient D remains approximately
constant over a wide range of functioning states of the cell (i.e. CW bias). While the FRT
predicts the existence of a coupling between cellular response and noise, it does not specify
how this coupling depends on the different states of the cell. Interestingly, the observed
linear coupling implies that the coefficient D remains nearly constant with the functioning
states of the cell (expression levels of chemotaxis proteins or CW biases). We hypothesize
that the specific design of the signalling pathways itself could govern such a constraint. We
find that a simple kinetic model and experimental data support this hypothesis
(Supplementary Fig. 8): the value of the coefficient D is governed by the adaptation
mechanism that uses the classic futile cycle27 as a core module where two antagonistic
enzymes regulate the activity of the kinase-receptor complexes. Since the futile cycle is a
design shared by a large class of signalling pathways21,28–29, it raises the possibility that for
these systems as well, noise and cellular response are coupled in a similar way. More
generally, to gain further insights on the nature of this coupling, future experiments should
examine the role of specific designs of signalling network on this interdependence27.
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In conclusion, we experimentally established that the cellular response to a small external
stimulus can be inferred by characterizing the signalling noise before the stimulus.
Consequently, we anticipate that below an upper bound imposed by rotational diffusion28,
cells with the largest behavioural variability before stimulus would also exhibit the strongest
chemotactic drift in response to an external stimulus, as theoretically discussed in a full
kinetic model in ref. 21. The fact that the distribution of wild-type cells peaks for the
phenotype with the largest behavioural variability might lead one to conclude that noise may
be a key trait that has been independently selected14. Instead, the FRT indicates that
behavioural variability and cellular response are profoundly coupled; these two traits cannot
be adjusted independently by varying the levels of gene expression alone. This work
illustrates the significance of the FRT as an operational framework that uses first principles
rather than specific molecular details to establish a fundamental relationship between
dynamical properties of signalling networks in living cells.

Methods Summary
Bacterial strains and plasmids

RP437 strain—We used RP437 as wild-type E. coli strain29. We transformed the strain
with the TetR-inducible plasmid pZE21-CheR that encoded CheR.

Behavioural assays—Cultures grew overnight in 3 mL of tryptone broth at 35°C with
shaking at 200 rpm. Then we transferred the overnight cultures to a 250 mL flask, where we
diluted them 1:50 in 12 mL tryptone broth and grew the cells again at 35°C at 200 rpm. To
obtain cultures with different CW biases, we induced plasmid expression with various
concentrations of anhydrotetracycline (aTc) in the diluted overnight cultures. The media also
contained the antibiotic specific to each plasmid. We harvested the cells when the optical
density (O.D.) reached ~0.3 at 600 nm. We washed the cells and resuspended them in
motility medium (0.1 mM EDTA, 0.1 mM L-methionine, 10 mM potassium phosphate pH
7.0). Photo-release of caged-aspartate: We illuminated the sample with an intense UV light
from the Xenon flash coupled into a light guide (A2873, Quartz glass fiber, Hamamatsu)
and widely focused onto the whole sample with two lenses (UV coated lenses, focal = 35
mm, diameter = 25.4 mm; focal = 20 mm, diameter = 12.7 mm, ThorLabs Inc.). These UV
flashes produced a stepwise release of 1 µM L-aspartate from the 0.5 mM (or 10 nM L-
aspartate from the 5 µM) caged L-aspartate30.

Binning scheme of CW biases—To obtain cultures with different CW biases, we
induced plasmid expression with various concentrations of anhydrotetracycline (aTc) (0–2.5
ng/mL). We sorted cells by their CW bias before stimulus and grouped them into the
following CW bias intervals: 0.00–0.05 (a), 0.05–0.10 (b), 0.10–0.15 (c), 0.15–0.20 (d),
0.20–0.25 (e), 0.25–0.30 (f), 0.30–0.40 (g), 0.40–0.50 (h) and 0.50–0.60 (i). We observed
that most wild-type (RP437) E. coli cells had CW biases between 0.05 and 0.2 (Fig. 1a). To
increase the chance to obtain cells with CW bias higher than 0.2, we transformed wild-type
cells with the TetR-inducible plasmid pZE21-CheR that encodes CheR. The wild-type cells
with and without plasmid exhibited the similar noise (Fig. 3a) and a response time
(Supplementary Fig. 1a, c, and d) at the single cell level.

Cellular Response—For each CW bias bin, the response time was measured from the
time of stimulus through all successive averaged CCW intervals that were different in
duration from the mean CCW interval before stimulus. CW intervals between successive
CCW intervals were also included to compute the response time. Although the cellular
response to stimulus stretches, in some cases, beyond the second interval, the first interval
contained most of the chemotactic response to both small and large stimuli.
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Correlation time—Because autocorrelation functions of time series of CW and CCW
switching events did not exhibit a clear typical correlation time (Supplementary Fig. 4a) we
used a serial correlation analysis. The serial correlation coefficients (Supplementary Fig. 4b)
for the CCW interval lengths allow us to determine how long the CCW sequences are
correlated19–20. We converted the correlated number of sequences to the real correlation
time lengths, including the half-length of the first uncorrelated CCW interval. To determine
if the sequences in each lag (the number of preceding CCW intervals) were correlated, we
used the Wilcoxon rank sum test (“ranksum” Matlab function) at a significance level of p =
0.01 as in ref. 20. We considered the first non-zero lag that had h = 0 as the end of the
correlation. For the Wilcoxon rank sum test in each CW bias bin, we used 100 consecutive
CCW and CW interval lengths and 300 randomly reshuffled series. We performed the
Wilcoxon rank sum test 100 times with the different sets of reshuffled series and determined
the average correlated lags and the average correlation time in each CW bias bin
(Supplementary Fig. 4c).

Low frequency noise and motor noise—We define the low frequency noise 
of ith cell as the integrated power density (Pi(f)) of the binary time series from fi = 1/1500

s−1 to ff=1/10 s−1  (Fig. 3a). The integrated flat baseline of the
power density (Fig 3a, dark grey line) in the same time scale defines the low frequency

motor noise . We estimated signalling noise from the average experimental
power spectral density, the average CW bias , and the gain function (gM) between the
input signal (steady level  of [CheY-P]) and output signal  using the

formula  introduced by Shibata et al.22 (Full Methods).

Full Methods and any associated references are available in the online version of the paper
located at www.nature.com/nature.

Full Methods
Strains and Plasmids

RP437 strain—RP437 is a wild-type E. coli strain for chemotaxis29. To construct pZE21-
CheR, we PCR amplified the cheR the E. coli RP437 chromosome with the following
primers: CheR-KpnI-5’: 5’-gcc ggt acc atg act tca tca tct ctg ccc tg-3’ and CheR-HindIII-3’:
5’-cgc aag ctt tta atc ctt act tag cgc at-3’. The gene fragment was inserted in the KpnI and
HindIII sites of a pZE21 series plasmid31 that contained a kanamycin resistance cassette and
a TetR inducible promoter. The plasmid pUHS-IntI encodes tetR under a constitutive
promoter, which modulates the expression of the TetR-regulated cheR construct. This
plasmid carries a spectinomycin resistance gene.

RP4972 strain—RP4972 is derived from the RP437 strain and contains a deletion of the
cheB gene (gift from J.S. Parkinson). RP4972 cells were complemented with a Lac-
inducible plasmid, pME304, expressing CheBc proteins32.

RP4992 strain—RP4992 is derived from the RP437strain and contains a deletion of cheB
gene (gift from J.S. Parkinson). RP4992 cells were complemented with a LacR-inducible
plasmid, pZA32-CheBc, and a TetR-inducible plasmid, pZA21-CheBc, both expressing
CheBc proteins. To construct pZA32-CheBc, we amplified the cheBc gene fragment from
the chromosome of E. coli RP437 cells withprimers CheBc-5’: gcg gta ccg cat gct gaa ggc
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ggg gcc gtt gtt g and XbaI-CheB-3’: gct cta gat taa ata cgt atc gcc tgt c. The gene fragment
was inserted in the KpnI and XbaI sites of a pZA32 series plasmid that contained a
chloramphenicol resistant cassette and a LacR inducible promoter. To construct pZA21-
CheBc, we amplified the cheBc gene fragment from the chromosome of E. coli RP437 cells
using the primers CheBc-5’and XbaI-CheB-3’. We inserted the gene fragment into the KpnI
and XbaI sites of a pZA21 series plasmid that contained a kanamycin resistant cassette and a
TetR inducible promoter.

HPLC calibration of the release of aspartate
We prepared 10 µL samples of 0.5 mM caged L-aspartate solution under the same
conditions for the chemotaxis experiments and illuminated them with intense UV light from
a Xenon flash lamp (built-in L7685 reflective mirror, 60W, Hamamatsu). We estimated the
relative concentration of the caged L-aspartate in each sample by the HPLC peak area. By
comparing the decreasing HPLC peak area with its initial peak area, we found the released
L-aspartate concentration as a function of the number of UV flashes (Supplementary Fig. 9).
The samples released about 1 µM L-aspartate per UV flash. The HPLC gradient conditions
had five steps: i) equilibrium with 20% acetonitrile, 0.1% TFA/80% water, 0.1% TFA; ii)
gradient of 20–55% acetonitrile over 30 min; iii) washing-1 with 55–90% acetonitrile over
20 min; iv) washing-2 with 90% acetonitrile for 5 min; and v) equilibrium with 20%
acetonitrile, 0.1% TFA/80% water, 0.1% TFA.

Photo-release and single cell assay
We sheared the flagella of the cells by slowly forcing them through a thin needle (inner
diameter = 0.19 mm, 27 G ½, B–D) 40 times. We washed the cells and resuspended them in
motility medium. We prepared poly-L-lysine coated glass slides (No. 1½, 18 mm, Corning)
and a solution of beads (Polybead Amino 1.0 micron Microspheres, Polysciences. Inc.)
coated with rabbit antibodies against flagella. We mixed the cells (4–5 µL) with the beads
(4–5 µL) and incubated them for 20 min at room temperature. This process caused the cell
bodies to stick to the glass slide and the beads to attach to the flagella. Although the
probability for a bead to attach to a rotating flagellum was low, we consistently obtained a
few labelled flagella in each sample. After incubation we removed the unattached cells and
beads and then added 8 µL of 5 µM (for small stimulus) or 500 µM (for large stimulus)
caged L-aspartate solution to the sample medium. We covered the sample with oil
(Immersion oil transparent to UV: type FF, Cargille Laboratories Inc.) to prevent
evaporation. We placed the sample under a dark field condenser to produce a bright red
image of the bead. Harmful blue light was filtered out by a long-pass filter (NT52-543,
Edmund Industrial Optics). We observed the samples under an Olympus IX71 microscope
with an oil immersion objective 100× (numerical aperture = 1.3, Olympus Uplan FI, oil iris
∞/0.17, Japan). We recorded the long circular motions of individual beads attached to
rotating flagella of single cells through a 4-quadrant photomultiplier (PMT) (Type:
R5900U-01-M4, Hamamatsu). The signal from the PMT, a 4 voltage time series, was
monitored with a PC computer via LabView software (National Instrument, Austin, TX).
The rotation of the bead was simultaneously recorded using a CCD camera (1/3”
midresolution Exview digital B/W camera, Sony). We converted the signal to a binary time
series indicating transitions between CCW and CW rotations. After 1500 s (or 300 s) of
recording the rotational motion of the bead, we photo-released the caged aspartate (caged L-
Aspartic Acid, Sodium Salt (189110): N-[1-(2-Nitrophenyl)ethyloxycarbonyl]aspartic Acid,
Sodium, M.F. (C13H13N2O8·Na), M.W. (348.2), λmax (264 nm), ε (4,710 M−1 cm−1),
Calbiochem or synthesized by David Trentham, Gordon Reid, and John Corrie)
(Supplementary Fig. 9). The magnitude of the stepwise stimulus corresponds to the typical
increase in attractant concentration encountered by bacteria swimming in a gradient of 1
nM/µm ref34–35.
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Definition of CW bias

We define the CW bias (bi,j) of the ith cell at the jth CW interval  as the ratio between
the duration of the jth CW interval and the sum of the jth CW interval and jth counter-

clockwise (CCW) interval . We calculated the pre-stimulus CW bias

of the ith cell  over a 1500-second (or 300-second) time series of  CCW and

 CW intervals before stimulus as  seconds for the
cells responding to the small stimulus,  seconds for cells responding to the
large stimulus with CW bias < 0.25 and  seconds for cells responding to the
large stimulus with CW bias ≥ 0.25). To calculate the post-stimulus CW bias of the ith cell

, we took the temporal average of the bi,j over a 1500-second time series after a

small stimulus following the cell’s response: . Here, jS+k represents
the kth interval after the stimulus (at j=jS) and ti,jmax − ti,jS+2 ≈ 1500sec. To prevent
overshooting the time regime seen after the response to a large stimulus, we did not include

the first 200 CCW and CW interval pairs after the stimulus: , where
ti,jmax − ti,jS+2 ≈ 900 sec (for the cells with CW bias < 0.25) or ti,jmax − ti,jS+2 ≈ 300 sec (for
the cells with CW bias ≥ 0.25).

Cellular Response
Intervals were strictly different when the associated standard error of the mean CCW
intervals after stimulus did not overlap with the mean pre-stimulus CCW interval (dark grey
dotted lines in Fig. 1b and 1c, and Supplementary Fig. 1e). In some instances, the response
time included the second (and first CW) and/or third CCW (and second CW) interval after
stimulus. Because of the presence of a few outliers, we used the geometric mean to compute
the average of the CCW interval lengths after stimulus for each CW bias bin (Fig. 1b).

Estimating signalling noise

To estimate the signalling noise, we used a formula  which shows

the relationship between the variance  of [CheY-P] and the variance  of the
output signals. This formula was derived from a model recently introduced to describe
generally the gain-noise relationship between the input and output signals in the chemical
reaction network22. As Shibata et al. showed22, the temporally fluctuating output signal
from a well defined steady state (CW bias) due to the fluctuating input signal ([CheY-P]) is
described by the following linearized chemical Langevin equation, δṀ * = γM δYP − δM */
τM + ξM (t), where δM * and δYP are small deviations of the CW bias and the CheY-P
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concentration from their steady values, respectively, and τM and ξM (t) are the typical time
scale of the motor alone and the Gaussian white noise term which satisfies

, respectively. From this equation, we obtain the total
variance of the output signals due to the temporally fluctuating input signals and the

Gaussian white noise:  is the steady value of

fluctuating CheY-P concentrations given by  (KM and NH (Hill
coefficient) are given by respectively 3.1 µM and 10.3 in ref.15), the constant ΘM in the first

term is defined by  is the CW bias, gM is the gain function defined as
the ratio of the fractional change of the output signal to the input signal (i.e.

. The last form is obtained from the ref.15), and
τCheYp is a characteristic time scale of the [CheY-P] fluctuations and is proportional to the

input noise . This relationship is derived from the chemical
Langevin equation describing the [CheY-P] fluctuations from its steady state

, where ξY (t) is a Gaussian white noise term which satisfies

. As long as the external stimulus is small enough, the
response time to the stimulus should scale to τCheYp. For the broad range of the functioning
states of this paper, we have one condition, τCheYp »τM, in timescales involved in this
system. Under this condition, the above formula for the total variance of the output signals

can be simplified to  for any
binary time series and is equal to the integral of the power spectral density over all
frequencies (Supplementary Fig. 5: black) averaged over all wild-type (RP437 and RP437

expressing CheR from pZE21-CheR) cells and  is equal to the integral of the power
density (Supplementary Fig. 5: dark grey line) of the isolated motor. We approximated the
baseline of the motor power density by finding the mean value of the flat regime (from
fi=1/10 s−1 to ff=1/5 s−1) of the average experimental power density and extending the
baseline to the lowest frequency. By using the simplified formula above, we estimated the

signalling noise  values in each CW bias bin (Fig. 3b).

Definition of noise
We hypothesize that a small number of proteins and thermally activated biochemical
reaction rates cause stochastic fluctuations between functional states of signalling proteins.
Operationally, we monitor the cellular behaviour in a motility medium that does not support
growth but allows bacteria to perform chemotaxis. Under these conditions, the observed
noise does not result from protein synthesis or degradation; rather, it results from
fluctuations in protein functional states about a well-defined steady state.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Park et al. Page 9

Nature. Author manuscript; available in PMC 2011 December 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgments
This research was funded by NSF DMR award 0213745 to MRSEC at the University of Chicago, and NIH award
R01AI059195-03 to PC. WP and TE were supported by an Alfred P. Sloan Research Fellowship and a National
Academies Keck Futures Initiative to TE. David Trentham supplied caged L-aspartate. JFM was supported by NSF
awards PHY-0852130 and DMR-0715099 and NIH grant 1U54CA143869-01. This work was also supported by the
Chicago Biomedical Consortium with support from The Searle Funds at The Chicago Community Trust. We thank
T. Shimizu for discussions and sharing unpublished work. We thank Jeff Moffitt and Kevin Wood for comments on
the manuscript and all members of the Cluzel lab for many helpful discussions. Wendy Grus provided editorial
assistance.

References
1. Bourret RB, Borkovich KA, Simon MI. Signal transduction pathways involving protein

phosphorylation in prokaryotes. Annu Rev Biochem. 1991; 60:401–441. [PubMed: 1883200]
2. Bourret RB, Stock AM. Molecular information processing: Lessons from bacterial chemotaxis. J

Biol Chem. 2002; 277:9625–9628. [PubMed: 11779877]
3. Korobkova EA, Emonet T, Park H, Cluzel P. Hidden stochastic nature of a single bacterial motor.

Phys Rev Lett. 2006; 96 058105.
4. Callen HB, Welton TA. Irreversibility and Generalized Noise. Phys Rev. 1951; 83:34–40.
5. Prost J, Joanny JF, Parrondo JM. Generalized fluctuation-dissipation theorem for steady-state

systems. Phys Rev Lett. 2009; 103 090601.
6. Bustamante C, Macosko JC, Wuite GJL. Grabbing the cat by the tail: Manipulating molecules one

by one. Nat Rev Mol Cell Bio. 2000; 1:130–136. [PubMed: 11253365]
7. Dorignac J, Kalinowski A, Erramilli S, Mohanty P. Dynamical response of nanomechanical

oscillators in immiscible viscous fluid for in vitro biomolecular recognition. Phys Rev Lett. 2006;
96

8. Paulsson J. Summing up the noise in gene networks. Nature. 2004; 427:415–418. [PubMed:
14749823]

9. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. Regulation of noise in the
expression of a single gene. Nat Genet. 2002; 31:69–73. [PubMed: 11967532]

10. Cugliandolo LF, Dean DS, Kurchan J. Fluctuation-dissipation theorems and entropy production in
relaxational systems. Phys Rev Lett. 1997; 79:2168–2171.

11. Chetrite R, Falkovich G, Gawedzki K. Fluctuation relations in simple examples of non-equilibrium
steady states. J Stat Mech-Theory E. 2008

12. Speck T, Seifert U. Restoring a fluctuation-dissipation theorem in a nonequilibrium steady state.
Europhys Lett. 2006; 74:391–396.

13. Berg HC. Motile behavior of bacteria. Physics Today. 2000; 53:24–29.
14. Korobkova E, Emonet T, Vilar JM, Shimizu TS, Cluzel P. From molecular noise to behavioural

variability in a single bacterium. Nature. 2004; 428:574–578. [PubMed: 15058306]
15. Cluzel P, Surette M, Leibler S. An ultrasensitive bacterial motor revealed by monitoring signaling

proteins in single cells. Science. 2000; 287:1652–1655. [PubMed: 10698740]
16. Sourjik V, Berg HC. Receptor sensitivity in bacterial chemotaxis. Proc Natl Acad Sci U S A. 2002;

99:123–127. [PubMed: 11742065]
17. Barkai N, Leibler S. Robustness in simple biochemical networks. Nature. 1997; 387:913–917.

[PubMed: 9202124]
18. Alon U, Surette MG, Barkai N, Leibler S. Robustness in bacterial chemotaxis. Nature. 1999;

397:168–171. [PubMed: 9923680]
19. Anderson RL. Distribution of the serial correlation coefficient. Ann Math Stat. 1942; 13:1–13.
20. Ratnam R, Nelson ME. Nonrenewal statistics of electrosensory afferent spike trains: implications

for the detection of weak sensory signals. J Neurosci. 2000; 20:6672–6683. [PubMed: 10964972]
21. Emonet T, Cluzel P. Relationship between cellular response and behavioral variability in bacterial

chemotaxis. Proc Natl Acad Sci U S A. 2008; 105:3304–3309. [PubMed: 18299569]

Park et al. Page 10

Nature. Author manuscript; available in PMC 2011 December 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



22. Shibata T, Fujimoto K. Noisy signal amplification in ultrasensitive signal transduction. Proc Natl
Acad Sci U S A. 2005; 102:331–336. [PubMed: 15625116]

23. Bray D, Levin MD, Morton-Firth CJ. Receptor clustering as a cellular mechanism to control
sensitivity. Nature. 1998; 393:85–88. [PubMed: 9590695]

24. Sourjik V, Berg HC. Functional interactions between receptors in bacterial chemotaxis. Nature.
2004; 428:437–441. [PubMed: 15042093]

25. Rao CV, Wolf DM, Arkin AP. Control, exploitation and tolerance of intracellular noise. Nature.
2002; 420:231–237. [PubMed: 12432408]

26. Bialek W, Setayeshgar S. Physical limits to biochemical signaling. Proc Natl Acad Sci U S A.
2005; 102:10040–10045. [PubMed: 16006514]

27. Shinar G, Feinberg M. Structural Sources of Robustness in Biochemical Reaction Networks.
Science. 2010; 327:1389–1391. [PubMed: 20223989]

28. Andrews BW, Yi TM, Iglesias PA. Optimal noise filtering in the chemotactic response of
Escherichia coli. PLoS Comput Biol. 2006; 2:e154. [PubMed: 17112312]

29. Parkinson JS, Houts SE. Isolation and behavior of Escherichia coli deletion mutants lacking
chemotaxis functions. J Bacteriol. 1982; 151:106–113. [PubMed: 7045071]

30. Jasuja R, Yu-Lin, Trentham DR, Khan S. Response tuning in bacterial chemotaxis. P Natl Acad
Sci USA. 1999; 96:11346–11351.

31. Lutz R, Bujard H. Independent and tight regulation of transcriptional units in Escherichia coli via
the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 1997; 25:1203–
1210. [PubMed: 9092630]

32. Balch WE. Biochemistry of interorganelle transport. A new frontier in enzymology emerges from
versatile in vitro model systems. J Biol Chem. 1989; 264:16965–16968. [PubMed: 2507534]

33. Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level
expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995; 177:4121–
4130. [PubMed: 7608087]

34. Adler J. A method for measuring chemotaxis and use of the method to determine optimum
conditions for chemotaxis by Escherichia coli. J Gen Microbiol. 1973; 74:77–91. [PubMed:
4632978]

35. Bainer R, Park H, Cluzel P. A high-throughput capillary assay for bacterial chemotaxis. J
Microbiol Methods. 2003; 55:315–319. [PubMed: 14500024]

Park et al. Page 11

Nature. Author manuscript; available in PMC 2011 December 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1. CCW interval lengths pre- and post-stimulus
(A) Histogram of CW bias of wild-type cells. Grey bars are bins covering the average CW
bias regime of wild-type cells. We sorted cells by their CW bias before stimulus and
grouped them into the CW bias intervals (Methods). CW bias bins h and i are absent from
the histogram because cells with CW bias greater than 0.4 require extra CheR from plasmid
pZE21-CheR. We observed that most wild-type cells had CW biases between 0.05 and 0.2.
To increase the chance to obtain cells with CW bias higher than 0.2, we transformed wild-
type cells with pZE21-CheR (Methods). The first (B) and second (C) mean post-stimulus
CCW interval lengths vs. pre-stimulus CW bias for all wild-type (RP437 and RP437
expressing CheR from pZE21-CheR) cells. (See Supplementary Fig. 1 for post-stimulus
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CCW interval lengths in individual cells.) Black circles, cells exposed to a small stimulus
(10 nM stepwise increase of L-aspartate). Grey triangles, cells exposed to a large stimulus (1
µM stepwise increase of L-aspartate). Black line, power-law fit of the geometric mean of
pre-stimulus CCW interval lengths calculated over 1500 s for all wild-type (RP437 and
RP437 expressing extra CheR from pZE21-CheR) cells as a function of the pre-stimulus
CW bias (Supplementary Fig. 1b). Error bars show the standard error associated with the
average CCW interval length in each bin. Dark grey dotted line, geometric mean of the
CCW interval lengths following a randomly chosen time point in non-stimulated cells. As
the CW interval order after stimulus increases, the mean CCW interval lengths after
stimulus approaches the mean CCW interval lengths (See also Supplementary Fig. 1).
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Fig. 2. Response and adaptation to stepwise stimulus in cells with similar CW bias
(A) Average response time for wild-type (RP437 and RP437 expressing extra CheR from
pZE21-CheR) cells exposed to a stepwise small (black circles, 10 nM L-aspartate) or large
(inset; grey triangles, 1 µM L-aspartate) stimulus. Error bars show the standard error
associated with the average response time within each bin (a–i, Methods). (B) Average
response time to a small (black circles) or large (inset, grey triangles) stimulus as a function
of the correlation time for wild-type (RP437 and RP437 expressing CheR from pZE21-
CheR) cells. For the large stimulus, the average response time was adjusted by a correction
factor (Supplementary Fig. 2d). The solid lines are linear fit functions forced through the
origin. Black line: Response time = C*Correlation time. C≈0.98±0.10 (R2=0.75). Inset grey
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line: Relaxation time = C*Correlation time. C≈12.23±1.83 (R2=0.07). The letters
correspond to CW bias bins (Methods). Error bars for the correlation time are the half
lengths of the first uncorrelated CCW intervals. Error bars for the response time are the
standard error associated with the average response time within each bin. Grey area, peaks
of wild-type cell population.
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Fig. 3. Low frequency noise in non-stimulated cells
(A) Low frequency noise in individual wild-type RP437 cells (black) and RP437 cells
expressing CheR from pZE21-CheR (grey) versus CW bias. (Inset) Power spectral density
(black) averaged over wild-type cells (RP437 and RP437 cells expressing CheR from
pZE21-CheR) with CW bias = 0.15–0.20 (see Supplementary Fig. 5 for all CW bias bins).
Power spectral density (dark grey line) of the motor decoupled from the signalling network3

(See Supplementary Fig. 5 for all CW bias bins). We determined the low frequency noise for
the region between the dotted lines.

Park et al. Page 16

Nature. Author manuscript; available in PMC 2011 December 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(B) Signalling noise as a function of CW bias for wild-type RP437 cells and RP437 cells

expressing CheR from pZE21-CheR. Signalling noise is defined as the variance  of
the fluctuating [CheY-P]. Letters correspond to the CW bias bins (Methods). The power
spectral densities and CW biases are averaged over cells within the same CW bias. Error
bars show the standard error associated with the estimated signalling noise within each bin.
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Fig. 4. Relationship between signalling noise and cellular response to a small external stimulus

(A) Inverse of the coupling coefficient  averaged over the long
timescale for which this ratio is constant for the small (black circles) or large (grey triangles)
stimulus. We computed the geometric mean over frequencies ranging from 1 s to 5 min for a
small stimulus (from 10 s to 5 min for a large stimulus) in each CW bias bin. Standard error
of the mean is smaller than the marker size. Lines, mean value of |K̃(ω)|CW bias computed
over CW biases ranging from ~0.05 to 0.5 for a small stimulus (black) and from ~0.1 to 0.3
a large stimulus (grey). (Inset) Inverse of |K̃(ω)|CW bias for CW bias ranging from 0.15 to
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0.20 for a small stimulus (10 nM L-aspartate increase) released at t = 0. See Supplementary
Fig. 7 for all CW bias bins. (B) Average response times of wild-type (RP437 and RP437
expressing inducible CheR) cells to small (black circles) or large (inset, grey triangles)
stimulus versus mean pre-stimulus signalling noise. Solid lines, linear fits forced through the

origin: . Black line: C=259±25 sec/µM2 (R2=0.8) for small
stimulus. Inset, grey line: C=3215 ±307 sec/µM2 (R2=0.4) for large stimulus. Grey area,
average functioning state of wild-type population. (C) The correlation time as a function of
the mean signalling noise before stimulus for wild-type (RP437 and RP437 expressing CheR
from pZE21-CheR) cells. Black line, linear fit function forced through the origin

( ; C≈257 ±21 sec/µM2 (R2=0.9)). Error bars for the correlation
time are the average half-lengths of the first uncorrelated CCW intervals. Error bars for the
signalling noise are the standard error associated with the signalling noise in each bin. Grey
area is the average functioning state of wild-type population. Letters correspond to the CW
bias bins (Methods).
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